当前位置:首页 > 教育范文 > 教学计划

高二数学教学计划

时间:2024-05-20 21:56:11
高二数学教学计划(15篇)

高二数学教学计划(15篇)

时间过得太快,让人猝不及防,我们的工作又进入新的阶段,为了今后更好的工作发展,请一起努力,写一份计划吧。那么你真正懂得怎么写好计划吗?下面是小编帮大家整理的高二数学教学计划,欢迎大家分享。

高二数学教学计划1

一、教材分析。

1、教材地位、作用。

本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。

2、学情分析。

学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。

二、教学目标。

1、知识与技能目标。

(1)理解等可能事件的概念及概率计算公式。

(2)能够准确计算等可能事件的概率。

2、过程与方法。

根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。

3、情感态度与价值观。

概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。

三、重点、难点。

1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

2、难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

四、教学过程。

1、创设情境,提出问题。

师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?

通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。

2、抽象思维。形成概念、

师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?

生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。

师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?

生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。

师:那基本事件有什么特点呢?

问题:

(1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?

(2)事件“出现偶数点”包含了哪几个基本事件?

由如上问题,分别得到基本事件如下的两个特点:

(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

(让学生交流讨论,教师再加以总结、概括)

让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力

例1:从字母中任意取出两个不同字母的试验中,有哪些基本事件?

师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。

解:所求的基本事件共有6个:

____________________________________________________________________________________。

由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。

师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)

试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;

试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;

例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;

经概括总结后得到:

①试验中所有可能出现的基本事件只有有限个;

②每个基本事件出现的可能性相等。

我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。

3、概念深化,加深理解。

试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?

生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?

生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。

这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。

4、观察比较,推导公式 ……此处隐藏19047个字……

2、认真备课,精心设计教案。

3、转变传统的教育教学观念,优化教学方法。

4、采取直观教学,注意理论联系实际。

四、 教法分析:

1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

五、教学要求:

1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;了解合情推理和演绎推理之间的联系和差异。

2、了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。

3、(理)了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

4、理解复数相等的充要条件;了解复数的代数表示法及其几何意义;会进行复数代数形式的四则运算;了解复数代数形式的加、减运算的几何意义。

5、(理)理解分类加法计数原理和分类乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题;理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,能解决简单的实际问题;能用计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题。

6、(理)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;理解超几何分布及其导出过程,并能进行简单的应用;了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题;理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。

7、了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题:了解独立性检验(只要求22列联表)的基本思想、方法及其简单应用;了解假设检验的基本思想、方法及其简单应用;了解聚类分析的基本思想、方法及其简单应用;了解回归的基本思想、方法及其简单应用。

9、了解程序框图;了解工序流程图(即统筹图);能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用;了解结构图;会运用结构图梳理已学过的知识、整理收集到的资料信息。

8、所有考生都学习选修4-4 坐标系与参数方程,理科考生还需学习选修4-5不等式选讲这部分专题内容。

六、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

七、提高自身素质的主要措施

1、认真学习专业知识,不断获取新知识、新信息,多进行总结与反思。

2、积极参加教研课改活动,多听同行老师的课,经常和经验丰富的老师交流心得。

高二数学教学计划15

一、指导思想:

以发展教育的理念为指引,以学校教务处、教研组、年级组工作计划为指南,加强备课组教师的教育教学理论学习,更新教学观念,落实教学常规,全面提高学生的数学能力,尤其是提高创新意识和实践能力,为社会培养创造型人才

二、学情分析及相关措施:

教学中要从学生的认识水平和实际能力出发,及时纠正不合理学习方法,研究学生的心理特征,做好高二第一学期与第二学期的衔接工作。注重培养学生良好的数学思维方法,良好的学习态度和学习习惯。具体措施如下:

(1)注意研究学生,做好高二第一学期与第二学期的衔接工作。

(2)集中精力打好基础,分项突破难点.所列基础知识依据新课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,讲难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进。

(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

(5)抓好尖子生与后进生的辅导工作。

(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

三、教学进度:

第1周 开学报名

第2周 选修2-2 1.1变化率与导数

第3周 1.2导数的计算 1.3导数在研究函数中的应用

第4周 1.4生活中的优化问题举例 1.5定积分的概念

第5周 1.6微积分基本定理 1.7定积分的简单应用

第6周 第一章复习2.1合情推理与演绎逻辑

第7周 2.2直接证明与间接证明 2.3数学归纳法

第8周 第二章复习 3.1数系的扩充和复数的概念

第9周 3.2复数代数形式的四则运算 第三章复习

第10周 期中复习

第11周 期中考试

第12周 选修2-3 1.1分类加法计数原理与分步乘法计数原理 1.2排列与组合

第13周 1.3二项式定理 第一章复习

第14周 2.1离散型随机变量及其分布列 2.2二项分布及其应用

第15周 2.3离散型随机变量的均值与方差 2.4正态分布

第16周 第二章复习

第17周 3.1回归分析的基本思想及其初步应用

第18周 3.2 独立性检验的基本思想及其初步应用

第19周 第三章复习

第20周 期末总复习

第21周 期末考试

《高二数学教学计划(15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式